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P R O P A G A T I O N  OF A PLANE JET OF C O N D U C T I N G  FLUID 

K. E. Dzhaugashtin 

Inzhenerno-Fizicheskii ZhurnaI, Vol. 8, No. 5, pp. 586-592, 1965 

An exact solution is given for the propagation of a plane jet of conducting liquid in a magnetic field at 
small values of magnetic Reynolds number. Profiles of velocity, temperature and intensity of magnetic 
field are given. 

We shall investigate the laminar motion of an incompressible conducting fluid issuing from a plane jet source, 
assuming that the physical properties of the fluid in the jet and in the surrounding medium are the same and that the 
magnetic Reynold numbers are much smaller than one. We shall also assume that the lines of force of the external mag- 
netic field in the flow plane xy are normal to the direction of fluid motion (Fig. 1). 

The initial system of boundary layer equations for this case has been given in [1]. We shall write this system in 
the following form: 

du Ou d~u ~,~ H~ c)u av 
u a T  + v - -  = ., . ,  ~ x  + - -  = o,  ( I )  

Og O f  2 @ 

OT c)T b2T ~ HI ~ 
. 1 .12 (2) 

dHx = __ ~ Huu. 
dy 

(s) 

The first two equations (1) are the equations of fluid motion. The velocity profiles obtained by solving these 
equations will be used for the subsequent determination of the temperature and magnetic intensity fields in the jet on the 
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Fig. 1. Laminar plane free jet in a magnetic 
field. 

basis of the equations of heat propagation (2) and induction (3), 
respectively. 

The dynamic part of this problem has been investigated by 
several authors [2-4]~ An error in [2] was pointed out in [3] and [4]. 
An expression for a universal velocity distribution function was ob- 
tained in [3]. Lack of an "integral condition," however, prevented 
the author from arriving at final formulas for the velocity components. 

A solution of the dynamic and thermal problems is given below, 
and the necessary "integral condition" is obtained, The intensity pro- 
file of the induced component of the magnetic field is also found in 
the approximation Re m << 1. 

We shall confine ourselves to finding a self-similar solution to 
the above problemo We write the exponential transformation equa- 
tions in the form 

u = u , ~ F ' ( ~ ) ,  u m = A x  ~ , ~ = Bx~ !/, H U = HoxP.  (4) 

The solution of the equation of motion must satisfy the boundary conditions 

au 
- - = 0 ,  v = 0  at y= - -0 ,  
@ 

u = 0 ,  --0u = 0  at y =  + ~ .  
@ 

To integrate the equation we substitute the expression for the velocity components and their derivatives from (4) 
into the first equation of system (1). We then obtain the following ordinary differential equation for the relative velocity 
profile: 

F'" +3(c~ + I ) F F " - - 6 ~ F  '2 - - N F '  = 0  (5) 
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with boundary conditions 

F - - 0 ,  F ' = = I ,  F . . . .  0 at ~ p = 0 ,  

F '  0 ,  F " = 0  at  q ~ = - t -  o~.  
( 6 )  

in deriving (5) it was assumed that 

c~ - -  1 A 6~t~H~, 
[ ~ = : p - -  2 , B - - - y - = 6 ,  N =  ---A~-- 

(~) 

The first of these relations was found from the condit ion that the dimensionless ve loc i ty  profile F'(~0) be independ-  
ent of ~, the second from the fact that the constants A and B are arbitrary, while in the third relat ion N denotes the di-  
mensionless complex character iz ing the magnet ic  effect on the flow. 

To determine the constant c~, we integrate (5) between 0 and ~o to obtain 

Q ' t GO t 1 N . , . ~ ,  \ 
a -  1 - ~ - - -  ~ :~ ' (8) 3 3 j' / 

0 
After substituting (8) into (5), we rewrite the la t ter  in the form 

(; ,; ,) F . . . .  9 ,~, ,  , N F ( o o )  [F '  (~p)]2d F"--2F" - ! - . t r  ~ - F " ~ ) - - ~  q - 3 F - ~ ) ,  [F ' (~ ) I2d~F = 0 .  (9) 

0 0 

When N = 0, Eq. (9) goes over into the equation for an ordinary hydrodynamic jet ,  whose solution is the function 

F '  = 1 - -  th  2 q0. (10) 

It is easy to verify that function ( t0)  satisfies Eq. (9), even for nonzero values of N. 

Using (10), we obtain from (8) a final  expression for the exponent 

1(N) 
=- - -  - -  1 -~- . (11) 

3 -?- 

The expression obtained for the re la t ive  ve loc i ty  profile must be related to the ac tual  veloci ty  f ield.  In je t -source  

theory some "conservation condit ion" is ordinari ly used for this purpose. To obtain such a condit ion in the case of flow 

of a conducting fluid, it  is convenient  to employ  the integral  ~ u ~/~ d/! - -  const, which does not depend on the longi-  
d --oo 

tudinaI coordinate for transformations (4). This invariant was proposed in [5] for solving the hydrodynamic problem.  To 
obtain a s imilar  integral  condition from the differential  equations, we mul t ip ly  the first equation of (1) by u 6 "~ and add 
this to the continuity equation after first mul t ip lying by u 6"~. 

Integrating the sum over the cross section of the jet ,  we obtain 

0 l u ~' dy = vu a-2 d~u aI~H~ " 
Ox ~- -1  ' O f  dg ? " u ~'-~ dy, ; = --~ (12) 

- - o o  - -  Q o  

Evaluating the integral  on the right using (4), (11), and (5), we see that it is ident ica l ly  equal to zero. tn this 
case we obtain from (12) the following integral  conservation condition: 

oo 
,I u~ dy = ( & - - l )  D.  (13) 

The constant of integration D depends, general ly  speaking, on the momentum J of the jet ,  the density p, the con-  
duct ivi ty  o of the fluid, and the magnet ic  field intensity Hy. In the l imi t ing  case of a nonmagnet ic  jet  (o0 = 0 orH 0 = 0) 

the constant D = Jo/P, i . e . ,  coincides with the k inemat ic  momentum of the je t  (6 = 2). The value of D should be 
assumed given, as is usual  in je t -source  problems. It should be noted that the integral  re lat ion derived determines the 
region of variat ion of the se l f - s imi la r i ty  constants, since 6 can take values in the range 1 -< 6 -< 2, as may be seen from 
(13). 
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We now determine the comtants A and B by substituting (4) into (13) and using (7) and (11). After some transfor- 
mations we ob ta in  

Aa/B-X(g)(~--1)D,  ~ , ( 8 ) = {  i _  

From the relation A = 6uB 2 and (14), we find the required expressions: 

2 

--1 

iF '  ((p)]~ d T �9 (14) 

1 

[ ( 0 - - l )  ~-(;) D 2d-i  (15) 

Finally, we write the relations for the variation of the mass flow G per second and momentum J along the jet: 

i 1 G = 9udY =: 12p~ Bx-g (1--N/4) (1~) 

J = i 9u2dy =48p~ 2 ~X N/4. (i7) 

Let us briefly consider the results obtained. When a jet of conducting fluid propagates in a magnetic field, the 
field impedes the motion. As the electromagnetic volume force increases, the velocity drop (11) along the jet axis 
occurs more rapidly, and the mixing region increases. In this case, however, the relative velocity profile (10) does not 
change relative to the case N = 0. 

The constants denoting the variation along the jet axis of the velocity a and the effective jet width B, like the 
value of the magnetic interaction parameter N and the ratio 6 = g/a,  are determined b y  the value of the constant p 
(from the expression H U = HoXP): 

~. = I + 2 p ,  ~ = p ,  g = 19/(1+2p), N =  - - 4 ( 2 + 3 p ) .  (18) 

From expression (15) for A it follows that the vaIue of the constant lies in the range 1 -< 5 -< 2. Since all the con- 
stants are interrelated, specific values of the self-similarity constants a ,  B, etc., correspond to each value of 5 in this 

Values of Self-SimiIarity Constants 

N (~ ~=p 6 7 

--1/3 
--1/2 
--2/'3 
--~/6 

--2/3 
--3/4 
--5/6 
--11/12 
--1 

2 
3/'2 
5/4 

I 1/10 
1 

--4/3 
--1/4 
- - i /6  
--1/12 

0 

range. 

For clarity, these constants have been tabulated for several 
values of the parameter N. The values in the top row of the table 
correspond to ordinary hydrodynamic flow (N = 0, 6 = 2; values of 
5 > 2 lead to the unreal case of negative values of N). At vanes  
of the constants corresponding to the bottom row of the table, Eq. 
(1) has a trivial solution equal to zero (18) (when N = 4, 6 = 1; the 
case 5 < 1 does not give flow, since then A < 0). Note that the 
last case of a "degenerate jet" is naturally related to the self- 
similar solution examined here. 

As far as the integral characteristics of the jet are concerned, as the magnetic field increases, the ejecting prop- 
erties of the jet decrease, and mass addition along the length of the jet proceeds more slowly (18). The momentum of 
the jet also decreases as the magnetic field H0 increases. In this case, since at the origin the magnetic field is infinitely 
large (2), the jet must have infinite momentum (17), in contrast to the case of a nonconducting fluid. As a result of 
interaction with the magnetic field, at an infinitely smai1 distance the momentum becomes finite. These character-  
istics at the origin (Hy -+ ~ and t -+ ~o) are a generalization of the characteristics of a nonmagnetic jet source. 

Let us now turn our attention to the following important fact. It follows from (18) that the value of the magnetic 
interaction parameter N depends on the value of the constant p. Expanding the expression for N (7), using (15) and (18), 
we put it in the form 

o ~ H ~  4 ( 2 @ 3 p ) (  1 - k p  ),D )--(14-2p) 
p 6 1 -]-2p V 6-; (19) 

Equation (19) relates the external parameters of the problem, the momentum of the jet I, the field intensity Hy, 

and p, and determines the condition for self-similar flow in the jet. It follows, in particular, that, for a given jet mo-  
mentum, for exarople, the externalf ield cannot be chosen arbitrarily, and vice versa. This is a characteristic of the 
motion of jets of conducting fluid in a magnetic field at smalI values of  the magnetic Re number [6]. Pure hydrody- 
namic jet flow at a great distance from the source is known to be always self-similar. 
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Let us now derive an expression for the induced longitudinal component of the magnetic field Hx. From (3), using 
the expression for the velocity profile (10) and taking account of the symmetry of the lines of force about the jet axis 
(It• = 0 at y = 0), we find 

N 

h(~) =-= Hx/H,| :~ th  % Hx~ - :  - -  ~HoBx 4 

The component H x is antisymmetric relative to the jet axis. At its boundaries the H x are opposite in direction but 
equal in magnitude, which is determined by the total current I0 flowing in the cross section of the jet: 

1 0 =  ~ idtj, (i = ~ uB). 
- - f r o  

Note that the total current is proportional to the mass flow per second of the jet :  

I 0 -  ~H~ G. 

We shall examine the heat propagation equation for two variants of the boundary condition: 

OT 
- - = 0  at tj =0, T T~ at t j -=  + oo; 
0y 

T = T1 at tj = + ~ ,  T == Te at l / = -  oo. 

We introduce the self-similarity transformation: 
for a symmetric thermal boundary layer 

T - -  T~  - ( T m - - T o ~ ) O  1 (~p), T , n - - T ~  = Fxr ; (20) 

for an "asymmetric" thermal boundary layer 

T - - T ~ ( T I - - T ~ ) @ ~ ( ~ )  ( i . e . ,  y = 0 ) .  (21) 

For a solution remote from the source, we may neglect the term in (3) relating to the Ioule dissipation, which 
decreases with distance from the source faster than the remaining terms. 

, 

/,,FXy 

L 
Fig. 2. Relative velocity, magnetic fieid and temperature profiles in 
in a plane jet (a - Ol(~), b - O ~ ( ~ ) ) :  Z) N = 0 a n d P r =  Z;2) 0and  
0.5;  9) 1 and 1; 4) 1 and 0.5;  5) 2 and 1 ;6 )  2 and 0.5;  7) 3 and 1; 
8) N = 4; 9) Z'(~); 10) h(~) = -h(--~).  

From (3), taking into account (4) and (20), we have 

0" q -3Pr  [(a + l )  F6) ' - -27F '@]  = 0 .  (22) 

Integrating (22) within infinite limits, we find Y = - -  (c~ + l )/2 for boundary conditions 

tg' = 0  at q~ = 0 ;  
(23) 

0 = 0 ' - - 0  at ~ : - = •  
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Substi tut ing the va lue  of y in (22), we rewrite it in the form 

O" - t - 3 P r  (a q - l )  ( f O ) '  ~=0. 

Integrat ion of (24) with boundary condit ions (23) gives 

3 
�9 - -  Pr ( 1  1-r 

e)j ( ( p ) :  ] l : ' (qg] ~ .... [ c h  ~ P l - ' " "  C-'->,'/~) 

Note that when Pr = 1 - N/4, the tcmpera ture  and ve loc i ty  profiles are s imi la r ,  

Using the in tegra l  condit ions of conservat ion of excess hea t  conten t  

Q= ,t" pC~u(T-- Too)d!~, 
- - o o  

we de te rmine  the constant  F: 

[n the second case (y = 0) 

From the equat ion  

: 
]i 

B Q [chr (2- ~ ) - ~  dq0 
A pC. . _ 

0 = :  1 a t  q~ - :  -t- ~ ,  

6) = 0  at rp - : - -  oo. 

we have 

O" + 3 P r ( a - ! - l ) F ' O  = 0 

(24) 

(25) 

(2(~) 

[i , ] ' [ f  q O~ (q~) :- [ch ~l -vr 12-~v,2)d~ [ch q~l -p~ C ' - - N / ~ ) d  . (27) 
- -  - - o o  

In both cases the magne t i c  f ield acts via var ia t ion  of the ve loc i ty  f ield,  and the width of the the rmal  boundary 

layer  increases with increase  in the magne t i c  in te rac t ion  paramete r  N (Fig. 2). 

Natural ly,  when there is no magne t i c  field (N = 0), a l l  the solutions obta ined above go over into the usual  hydro-  
dynamic  solutions.  

NOTATION 

u, v - l o n g i m d i n a I  and transverse components  of ve loc i ty ;  x, y - l o n g i t u d i n a l  and transverse coordinates ;  T - 

t empera ture ;  H - magne t i c  field in tens i ty ;  cr B, ?', 6, A, B, F - constants to be de te rmined ;  D - a constant ;  G - mass 

flow in je t ;  J - m o m e n t u m  of je t ;  Q - excess hea t  con ten t  of j e t ;  I0 - total  current ;  H0 - reference va lue  of magne t i c  

f ield in tens i ty ;  p - a constant ;  o - conduc t iv i ty ;  v - k inema t i c  viscosity;  p - densi ty;  g - magne t i c  pe rm eab i l i t y ;  

F ' (~)  - v e l o c i t y ;  q - coordina te ;  Rem - magne t i c  Reynolds number ;  N - magne t i c  in te rac t ion  pa ramete r ;  01,03 - 

tempera ture  for symmet r i c  and a symmet r i c  the rmal  boundary  condi t ions.  
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